Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565973

RESUMO

A key challenge of analyzing data from high-resolution spatial profiling technologies is to suitably represent the features of cellular neighborhoods or niches. Here we introduce the covariance environment (COVET), a representation that leverages the gene-gene covariate structure across cells in the niche to capture the multivariate nature of cellular interactions within it. We define a principled optimal transport-based distance metric between COVET niches that scales to millions of cells. Using COVET to encode spatial context, we developed environmental variational inference (ENVI), a conditional variational autoencoder that jointly embeds spatial and single-cell RNA sequencing data into a latent space. ENVI includes two decoders: one to impute gene expression across the spatial modality and a second to project spatial information onto single-cell data. ENVI can confer spatial context to genomics data from single dissociated cells and outperforms alternatives for imputing gene expression on diverse spatial datasets.

2.
Nat Biotechnol ; 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735262

RESUMO

Factor analysis decomposes single-cell gene expression data into a minimal set of gene programs that correspond to processes executed by cells in a sample. However, matrix factorization methods are prone to technical artifacts and poor factor interpretability. We address these concerns with Spectra, an algorithm that combines user-provided gene programs with the detection of novel programs that together best explain expression covariation. Spectra incorporates existing gene sets and cell-type labels as prior biological information, explicitly models cell type and represents input gene sets as a gene-gene knowledge graph using a penalty function to guide factorization toward the input graph. We show that Spectra outperforms existing approaches in challenging tumor immune contexts, as it finds factors that change under immune checkpoint therapy, disentangles the highly correlated features of CD8+ T cell tumor reactivity and exhaustion, finds a program that explains continuous macrophage state changes under therapy and identifies cell-type-specific immune metabolic programs.

3.
bioRxiv ; 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37131616

RESUMO

The tsunami of new multiplexed spatial profiling technologies has opened a range of computational challenges focused on leveraging these powerful data for biological discovery. A key challenge underlying computation is a suitable representation for features of cellular niches. Here, we develop the covariance environment (COVET), a representation that can capture the rich, continuous multivariate nature of cellular niches by capturing the gene-gene covariate structure across cells in the niche, which can reflect the cell-cell communication between them. We define a principled optimal transport-based distance metric between COVET niches and develop a computationally efficient approximation to this metric that can scale to millions of cells. Using COVET to encode spatial context, we develop environmental variational inference (ENVI), a conditional variational autoencoder that jointly embeds spatial and single-cell RNA-seq data into a latent space. Two distinct decoders either impute gene expression across spatial modality, or project spatial information onto dissociated single-cell data. We show that ENVI is not only superior in the imputation of gene expression but is also able to infer spatial context to disassociated single-cell genomics data.

4.
Science ; 380(6645): eadd5327, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37167403

RESUMO

The response to tumor-initiating inflammatory and genetic insults can vary among morphologically indistinguishable cells, suggesting as yet uncharacterized roles for epigenetic plasticity during early neoplasia. To investigate the origins and impact of such plasticity, we performed single-cell analyses on normal, inflamed, premalignant, and malignant tissues in autochthonous models of pancreatic cancer. We reproducibly identified heterogeneous cell states that are primed for diverse, late-emerging neoplastic fates and linked these to chromatin remodeling at cell-cell communication loci. Using an inference approach, we revealed signaling gene modules and tissue-level cross-talk, including a neoplasia-driving feedback loop between discrete epithelial and immune cell populations that was functionally validated in mice. Our results uncover a neoplasia-specific tissue-remodeling program that may be exploited for pancreatic cancer interception.


Assuntos
Carcinogênese , Epigênese Genética , Pâncreas , Neoplasias Pancreáticas , Animais , Camundongos , Carcinogênese/genética , Carcinogênese/patologia , Comunicação Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia
5.
Nat Biotechnol ; 41(12): 1746-1757, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36973557

RESUMO

Metacells are cell groupings derived from single-cell sequencing data that represent highly granular, distinct cell states. Here we present single-cell aggregation of cell states (SEACells), an algorithm for identifying metacells that overcome the sparsity of single-cell data while retaining heterogeneity obscured by traditional cell clustering. SEACells outperforms existing algorithms in identifying comprehensive, compact and well-separated metacells in both RNA and assay for transposase-accessible chromatin (ATAC) modalities across datasets with discrete cell types and continuous trajectories. We demonstrate the use of SEACells to improve gene-peak associations, compute ATAC gene scores and infer the activities of critical regulators during differentiation. Metacell-level analysis scales to large datasets and is particularly well suited for patient cohorts, where per-patient aggregation provides more robust units for data integration. We use our metacells to reveal expression dynamics and gradual reconfiguration of the chromatin landscape during hematopoietic differentiation and to uniquely identify CD4 T cell differentiation and activation states associated with disease onset and severity in a Coronavirus Disease 2019 (COVID-19) patient cohort.


Assuntos
Cromatina , Epigenômica , Humanos , Cromatina/genética , Cromatina/metabolismo , Genômica , Linfócitos T CD4-Positivos/metabolismo , Algoritmos , Análise de Célula Única
6.
Cancer Cell ; 39(11): 1479-1496.e18, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34653364

RESUMO

Small cell lung cancer (SCLC) is an aggressive malignancy that includes subtypes defined by differential expression of ASCL1, NEUROD1, and POU2F3 (SCLC-A, -N, and -P, respectively). To define the heterogeneity of tumors and their associated microenvironments across subtypes, we sequenced 155,098 transcriptomes from 21 human biospecimens, including 54,523 SCLC transcriptomes. We observe greater tumor diversity in SCLC than lung adenocarcinoma, driven by canonical, intermediate, and admixed subtypes. We discover a PLCG2-high SCLC phenotype with stem-like, pro-metastatic features that recurs across subtypes and predicts worse overall survival. SCLC exhibits greater immune sequestration and less immune infiltration than lung adenocarcinoma, and SCLC-N shows less immune infiltrate and greater T cell dysfunction than SCLC-A. We identify a profibrotic, immunosuppressive monocyte/macrophage population in SCLC tumors that is particularly associated with the recurrent, PLCG2-high subpopulation.


Assuntos
Perfilação da Expressão Gênica/métodos , Neoplasias Pulmonares/genética , Fosfolipase C gama/genética , Carcinoma de Pequenas Células do Pulmão/genética , Plasticidade Celular , Humanos , Metástase Neoplásica , Prognóstico , Análise de Sequência de RNA , Análise de Célula Única , Análise de Sobrevida
7.
Cell ; 181(2): 236-249, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32302568

RESUMO

Crucial transitions in cancer-including tumor initiation, local expansion, metastasis, and therapeutic resistance-involve complex interactions between cells within the dynamic tumor ecosystem. Transformative single-cell genomics technologies and spatial multiplex in situ methods now provide an opportunity to interrogate this complexity at unprecedented resolution. The Human Tumor Atlas Network (HTAN), part of the National Cancer Institute (NCI) Cancer Moonshot Initiative, will establish a clinical, experimental, computational, and organizational framework to generate informative and accessible three-dimensional atlases of cancer transitions for a diverse set of tumor types. This effort complements both ongoing efforts to map healthy organs and previous large-scale cancer genomics approaches focused on bulk sequencing at a single point in time. Generating single-cell, multiparametric, longitudinal atlases and integrating them with clinical outcomes should help identify novel predictive biomarkers and features as well as therapeutically relevant cell types, cell states, and cellular interactions across transitions. The resulting tumor atlases should have a profound impact on our understanding of cancer biology and have the potential to improve cancer detection, prevention, and therapeutic discovery for better precision-medicine treatments of cancer patients and those at risk for cancer.


Assuntos
Transformação Celular Neoplásica/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral/fisiologia , Atlas como Assunto , Transformação Celular Neoplásica/patologia , Genômica/métodos , Humanos , Medicina de Precisão/métodos , Análise de Célula Única/métodos
8.
Nat Methods ; 16(2): 206, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30575808

RESUMO

The originally published version of this Research Highlight incorrectly stated that Guo-Cheng Yuan is at the University of California at Los Angeles; the correct affiliation is Dana-Farber Cancer Institute. The text has been corrected in the HTML and PDF versions of the paper.

11.
Nat Methods ; 15(12): 1001, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30504881
12.
Nat Methods ; 15(11): 860, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30377351
13.
Nat Methods ; 15(11): 859, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30377357

Assuntos
Cromatina
15.
Nat Methods ; 15(9): 652, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30171245
16.
Nat Methods ; 15(9): 652, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30171247
19.
Nat Methods ; 15(8): 572, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30065385
20.
Nat Methods ; 15(7): 482, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29967498
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...